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Abstract. Fuzzy modeling has become very popuar because of its main feature
being the ability to assign meaningful linguistic labels to the fuzzy sets in the
rule base. This paper examines Sugeno and Yasukawas qualitative modeling
approach, and addresses one of the remarks in the original paper. We propose a
cluster search algorithm that can be used to provide a better projection of the
output space to the input space. This algorithm can efficiently identify two or
more fuzzy clustersin the input space that have the same output fuzzy cluster.

11 ntroduction

Fuzzy modeling has become very popular because of the main feature of its ability to
assign meaningful linguistic labels to the fuzzy sets [1] in the rule base [2,3]. Sugeno
and Yasukawas quditative modding (SY) method [4] has gained much attention in
the fuzzy research fidd mainly due to its advantage of building fuzzy rule bases
automaticaly from sample input-out data. The fuzzy rule bases extracted by the SY
method are sparse fuzzy rule bases, i.e, where there are “gaps’ among the rules, so
that these regions can be interpolated from the remaining areas and rules [5,6,7]. In
our approach, we intend to extend this method — with the necessary dterations and
additiona steps. The usua fuzzy controller identification methods generate dense
fuzzy rule bases, so that the rule premises form a fuzzy partition of the input space. In
a dense fuzzy rule base, the number of rules is very high, as it depends on the number
of inputs k and the number of partitions per variable T in an exponentiad way.
Assuming al the partitions are consstent in al premises and consequents, the total
number of rules is|R|=0(T¥). In order to avoid this exponential number of rules

the SY method puts emphasis on the rule consequents, i.e, the output space, and first
finds a partition in Y. The determinaion of premises in the input space X is done by
splitting appropriately the inverse images of the output clusters. Using this approach,



the partitioning of the input space is done in a secondary manner, thus the number of
fuzzy rules does not increase exponentially with the number of inputs.

One of the important remarks made in the paper by Sugeno and Yasukawa [4], is the
condition under which more than one fuzzy cluster can be found in the input space, ®
that they correspond to the same output cluster. It is made clear that specia care has
to be taken to form two or more convex input clusters. However, the details of this
particularly important step are not given in any detail in the paper. With regards to
this remark, it has to be stated that two conditions have to be consdered when
proposing an dgorithm that could efficiently handle the problem. First, the agorithm
has to be able to identify the occurrence of severd (at least two) rules in one fuzzy
output clugter, i.e, the presence of more than one corresponding fuzzy cluster in the
input space. Second, the agorithm should be able to decide whether these input fuzzy
clusters identified can be merged or any of them can be discarded. This paper shows a
detailed andysis of these two conditions and proposes a cluster search agorithm that
can addressthis problem efficiently.

2 The Sugeno and Y asukawa's Qualitative M odeling M ethod

In agiven data set, with kinputs, the given input -output data pairsfor n paterns are:

(4, X2, X0 X V')
wherei=1,2,3,...n

The SY method [4] is able to perform two main steps, identification and qualitative
modelingin obtaining afuzzy mode as

R':if X iSAl ad x,is A} ... and x,is Al then yis B' )

In the identification step, it can be subdivided into Sructure identification | and 11,
and parameter identification  In structure identification I, the main purpose is to find
appropriate input candidates and input variables in building the modd. Structure
identification 11 is concerned with the input-output relations by concentrating on the
number of rules and partitions of the input space. The parameter identification step is
basically used to tune the parameters in the membership functions of the fuzzy sts.
Findly, linguidic labels can be assigned to the findized fuzzy sets in the rule base. In
this paper, we are mainly concerned with the structure identification 11 stage.

In order to extract a fuzzy rule base, the SY method uses two distinctive
characteristics.  First, it partitions the consequents of the rule and then finds a
relationship concerning the premises. It is important that it does not use an ordinary
fuzzy partition of the input space as shown in Figure 1. In order to satisfy the first
characteristic, it makes use of the fuzzy emeans method (FCM) [8] to search for the
fuzzy clusters in the output space using dl available data When determining the best
clugtersin the output space of the following sdlecting criterion [4] is used:
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where
n: number of datato be clustered;
C number of clusters, ¢ 3 2;
X! kth data;
X: average of data;
Vi vector expressing the center of theith cluster;
I:  rom
my: grade of thekth data belonging to the ith cluster
m: adjustable weight

The best cluster is determined when the sdecting criterion §c) resches a minimum
when the number of cluders c, increases. The fina results of the clugtering have the
rdation between the grade of membership beonging to a fuzzy cluser B for every
output y:

y'in BI(1£j £0):
(x',y), BY(y), B*(y")... BE(Y) 3
From the output fuzzy cluster B a fuzzy cluster A is induced in the input space as
shown in Fgure 2. If there are two input dimensons x, and X, the fuzzy cluster A can

then be projected to the axes x; andx, as shown inFgure 3.
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Fig. 1. Ordinary fuzzy partition of the input space
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Fig. 2. Fuzzy cluster A from output cluster B
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Fig. 3. Fuzzy cluster Afor two input dimensions

From these cluster rdlations, this can be formulated as follows:
A(x) = A(x2) =B(Y') @
From this output cluster, afuzzy ruleis generated as:

if x isA;and xyis Ay, thenyisB.

3 The Problem of Clustering Input Space

In the origina approach, the output cluster is typicaly used to obtain the
corresponding (single) input cluster as well, by projecting the output cluster onto the
input space. However, in cases where there is more than one cluster in the input space
corresponding to the same output cluster, eg. A' to A corresponding to the same



output cluster B, a further step has to be done in order to separate them. The SY
method suggests very generdly that in the case of two (or more) input fuzzy clusters,
two (or more) convex fuzzy clusters should be “formed carefully” in the input space
as shown in Figure 4 and Figure 5. However, the details of the method are not shown
in the paper as to how this can be done “carefully”. The first problem that we address
here is how to separate two or more input clusters and corresponding antecedents,
especialy in multi-dimensiond cases.
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Fig. 4. Two fuzzy clusters for one output cluster.
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Fig. 5. Another example of two fuzzy clusters for one output cluster.



Besides identifying the fuzzy clusters that may correspond in the input space to a
specific output fuzzy cluster, some other factors need to be considered. They can be
classified in two main aress asfollows:

(2) Merging of Input Clugters

After identifying the possible clusters in the input space, the next question is whether
dl the identified clusters are necessary to produce a reasonable modd. Depending on
the digtribution of the sample data as wel as the nature of the problem, the seemingly
Separate two or more input clusters may appear just because there is a dight decrease
between two pesks, indicating a lower frequency of data there, due to the uneven
digtribution of the available data. In this case, separating the clusters may not redly
improve the modd, but may increase the number of fuzzy rules constructed.

When sampling the data, noiss may accidentaly be included in the given input-output
sample. Therefore it is not possible to define an exact modd that describes the
rlationship between X and Y when noise exists in the input-output pair. However, a
probabilistic relationship governed by a joint probability law P(n) can be used to
describe the rdlative frequency of occurrence of input-output pairs (X, y) for n
training patterns. The joint probability law P() can be further separated into an
environmental probability law P(m) and a conditiond probability law P(g). For
notation expression, the probability law is expressed as:

P() = P(MP(Q ©

The environmental probability law P(n) describes the occurrence of the input X The
conditional probability law P(g) describes the occurrence of the Y based on the given
input X. An input-output pair (X, Y) is consdered to be noise if X does not follow the
environmental probability law P(m), or the output Y based on the given X does not
follow the conditiona probability law P(g. In this case, even when the input clusters
have been identified, it may be a noise motivated clustering result. In this case, using
dl the clusters may not redly improve the modd, but may increese the number of
fuzzy rules constructed and thus the computationa complexity.

(2) Computational Efficiency

The main advantage of the SY method as compared to traditiond methods is thet it
works on the consequents rather than the premises. This is very computationdly
efficient. Besdes, dfter the fuzzy moded; which is a sparse fuzzy rule base; has been
built, the model does not require intensve computation to generate an answer, as the
number of fuzzy rules is smal for most cases. Care must be taken when constructing
an adgorithm to identify the input fuzzy clusters within the output cluster. The
dgorithm has to be computationdly efficient and a the same time does not increase
the number of fuzzy rules generated tremendoudly.



4 | dentification of the Clustering in the Input Space

Cluster the output as per the SY method using fuzzy emeans In al our andyss here,
we are assuming that the digtribution in each cluster can be gpproximated by a norma
distribution.

For cluster G:

(1) Random sdlection

In each cluster, the population (U;) of that cluster consists of data with membership
not smaller than 0.2:

U; ={x; | m; ® 0.2, where j =1,...,N} ©)
where N isthe number of datain clusteri.

Those daa tha have membership grades smdler than 0.2 ae left out, and are
consdered to be ingignificant in contributing to the festures of the cluster. When
deding with very large number of data, which is common in most red world
gpplications, if we are to project al the output points back to the input space, this may
be very time consuming. Thetotd projections, p required are:

C
p=a (N;) U]
i=1
ad p>n
where N,; isthe number of datain clusteri

We propose here to project a subset of N by using smpling ditribution theory, being
s. Regardless the distribution of the datain the cluster, sisaways amdler than N [9].

When performing random sdection, it is dways necessary to ensure that the sample
contains the mgor information in the population, U,. The standard of measure is by
usng sampling digtribution theory [10,11]. The basic idea is to ensure tha the
sdlected data can approximate the population in the cluster (U;), by investigating the

meen (U, ), variance (s UZ) and standard deviation (s ) of the population.

For random sampling without replacement in a finite population, the variance (s )

and standard deviation (S ) of the sample are & follows (with the assumption that s
>0.05N):

sSi = . (8)
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where N1 isthefinite population correction factor.

However, according to the Central Limit Theorem, the finite populaion correction
factor can beignored if and only if S£0.05N .

If the sample §) we have sdected is a good representation of the population U;) in
the cluger, then the sampling error should be smdl. Sampling eror €) is the measure
of the difference between the sample average and the population average:

E=0 -5 (10)

In order to obtain a better random sample for use in the projection, three random data
sets are obtained and their sampling errors are compared. The best sampling error of
the three are then sdected for use in the next step. However, the next issue we have to
ded with is the size of s. In this paper, we make use of the mean as a guiddine. The
sze of sample, s, required for accuracy of s 7, A for aconfidencelevd, | are:

2
s=— >0 (12)
A2 s2

where Z is the z-vaue corresponding to the desired confidence leve, |

Aswe are usng 5% accuracy and a confidence level of 95%, s can be amplified to:
2
s&N
s=—EN (12
0.00065N +s &
As the denominator is a factor of 0.00065, s will be very smal compared to N if Nis
very large, thus the computational complexity of projecting p will be reduced.

(2) Partitioning of input

After the random sample s has been sdected, partitioning of the input varigbles into
intervals needs to be carried out in order to identify the clusters in the input space. In
this paper, we make use of the partial completeness measure K to account for the
information lost by partitioning [12]. The decisons on how to partition an input
varighle and the number of partitions required depends on how this partia
completeness measure  reflects  the information  lost.  Information logt  while
partitioning mainly occurs in the next sage. The main reason for information loss is



due to combining the adjacent intervds in searching for the norma distributed
clusters. Besides, the weghting function in discarding any rules as noise is dso
implied by the partitions, this will in turn cause information to be lost. Let Ru be the
st of rules obtained by considering dl ranges over the variables, then RuU be the set
of rules obtaned by conddering dl ranges from the patitioning of the variables.
When Ru is transformed into RJ, information is lost. The partid completeness
measureis basicaly used to measure how far or closeis RU' isto Ru

The partid completeness measure used to identify the number of intervals has direct
effect from the human's decison on the confidence level and support level far each
rule. It is known that in order to guarantee close rules will be generated, the minimum
confidence must be set to /K times the desred leve [12]. It is aso shown that equi-
depth partitioning minimizes the partid completeness level for any specified number
of intervals.

After the andyds, the number of partitions | required can be caculaed by the
formula:
- 2k
No. of Partitions (1) = ——— (13)
minsup(K - 1)
where  k isthe number of input variables,
min sup is the minimum support (as afraction) specified
by the user,
and K isthe partid completenesslevd.

It is important to have the partitions as smal as posshble in order to obtan a
congtructed rule base RU that is as close to Ru as possible, but this will effectively
increase the number of partitions. Care needs to be teken while sdecting the
appropriate partial completeness level, which is normally chosen to be between 15
and 5 [12]. If the number of partitions for an input variable is large, the support for a
partition may be low. If the support for a partition is too low and just happens to be
away from the searched didtribution as shown in Figure 6, it will be trested as an
outlier and be discarded while forming the cluster. In order to solve this problem, we
infroduce an dgorithm for combining adjacent partitions while searching for input
clusers. The detals of the combination dgorithm will be discussed in the next
section.

(3) Identifying input clusters

In this stage, the s projections are made and the counter Countg,; for each bin Bin; ae
adso set when it is hit by the projection. Bins refer to the intervals of the partitions.
Figure 7 shows the bins and counters for a onedimensond input space and the
projections from an output cluster.
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Fig. 6. Partitions with support less than cut off threshold are treated as outlier.
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Fig. 7. Example of the projections and countersin the bins.

Beside the counters, a relation is formed by al the input variables and the output.
Therefore, atota of s rdations are formed. The relations are constructed as:

{[X:IL (Binlj)inZ(Bian)!X:i’,(Bin3j)l"'v XL(Binkj); Gl} (14
wherei=1,2,3,...s
andj=1,23, ... 1

Based on the counter vadue in each bin, they are recombined in order to search for
fuzzy setsin the input space. The combination agorithm is asfollow:

A.

Identifying the centre of distribution

By moving from left to right dong the bins, the counter vaues are compared.
If max(Countg.;, Countgy,; ) < County,, then Bin is the centre of the



digribution. Figure 8 shows an example of the centres of the distribution
with the circled binswith highest hits, i.e. centres of the distribution.
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Fig. 8. lllustration of centre identification.
Distance measure.
Find the distance between the left and the centre of the distribution:

dist, =Count ginj - COUNtgjp; 1 (15)

If dist,_issmall (below athreshold) the two bins are combined into one.
The distance between the right and the centre of the distribution:
dISR = CDUnt Binj+l = COUI‘T[ Binj (16)

Smilar to the left hand sde, if disk is below the threshold, the two bins ae
combined. Figure 9 shows how they are combined. The above two Steps are
repegted until the two neighbouring distance messures are above the
threshold.

Threshold I —

Fig. 9. Combination of hins.



With these normd distributions found in the input space, input clusters are
constructed. Trapezoidd gpproximations based on Ruspini partitions [13] are then
used to convert the input clusters to trapezoida fuzzy membership functions.
Bascdly, the condition bdow is met when peforming the trapezoidd
gpproximations:

Ax)=1 (17)

Qo

i=1

Trapezoidd approximations based on Ruspini partitions are illustrated in Figure 10.

Bin Counter

input A
alpha

0

mettberships
Fig. 10. Approximating trapezoidal fuzzy membership functions.

The bins information in the relation is then subdtituted with their respective fuzzy
membership information. Any repetition relaions are then discarded. Reaions with
smal weighting functions or support level are trested as noise and are aso discarded.

(4) Congtructing fuzzy rules

For this output cluster with the relation information of the input space, fuzzy rules can
be congructed. If any fuzzy memberships are found to be next to each other, they are
merged into one fuzzy membership as shown in Figure 11. A prediction index (Pl) [4]
is then cdculated based on the predicted output and observed output. The prediction
index (P) [4] is

> (D
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(y nd) é a18)
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Fig. 11. Merging of fuzzy membership functions.

If it does not affect the PI, they will remain merged. This merging of fuzzy rules will
help to reduce the number of fuzzy rules extracted.

5Conclusion

This pgper has examined the Sugeno and Yasukawds quditative modding (SY)
method [4]. The popularity of the SY method is mainly due to its rule extraction
agorithm. SY method finds the partition in the output space and then projects back to
the input space in searching for the input partitions. This results in a sparse fuzzy rule
base. This method adso avoids the posshility of exponentiad growth of the fuzzy rule
base. One of the important remarks made in the paper [4] is the condition under which
more than one fuzzy cluster can be found in the input space that corresponds to the
same output cluster. This paper has examined this issue and formulated an agorithm
to address it. There are two conditions that are taken into condderation while
formulating the approach. First, the agorithm has to be able to identify the occurrence
of several rules in one fuzzy output cluster, i.e, the presence of more than one
corresponding fuzzy cluster in the input space. Second, the agorithm should be able
to decide whether these input fuzzy clusters identified can be merged or any of them
can be discarded. The main objective of our approach was to formulate an agorithm
that preserves the advantages of the origind SY method, which are computationd
efficiency and smadl humber of fuzzy rules produced.
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