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Abstract. Fuzzy modeling has become very popular because of its main feature 
being the ability to assign meaningful linguistic labels to the fuzzy sets in the 
rule base. This paper examines Sugeno and Yasukawa’s qualitative modeling 
approach, and addresses one of the remarks in the original paper. We propose a 
cluster search algorithm that can be used to provide a better projection of the 
output space to the input space. This algorithm can efficiently identify two or 
more fuzzy clusters in the input space that have the same output fuzzy cluster. 

 
 
1 Introduction 
 
Fuzzy modeling has become very popular because of the main feature of its ability to 
assign meaningful linguistic labels to the fuzzy sets [1] in the rule base [2,3]. Sugeno 
and Yasukawa’s qualitative modeling (SY) method [4] has gained much attention in 
the fuzzy research field mainly due to its advantage of building fuzzy rule bases 
automatically from sample input-out data. The fuzzy rule bases extracted by the SY 
method are sparse fuzzy rule bases, i.e., where there are “gaps” among the rules, so 
that these regions can be interpolated from the remaining areas and rules [5,6,7]. In 
our approach, we intend to extend this method – with the necessary alterations and 
additional steps. The usual fuzzy controller identification methods generate dense 
fuzzy rule bases, so that the rule premises form a fuzzy partition of the input space. In 
a dense fuzzy rule base, the number of rules is very high, as it depends on the number 
of inputs k and the number of partitions per variable T in an exponential way . 
Assuming all the partitions are consistent in all premises and consequents, the total 
number of rules is )( kTOR = . In order to avoid this exponential number of rules, 
the SY method puts emphasis on the rule consequents, i.e., the output space, and first 
finds a partition in Y. The determination of premises in the input space X is done by 
splitting appropriately the inverse images of the output clusters. Using this approach, 



the partitioning of the input space is done in a secondary manner, thus the number of 
fuzzy rules does not increase exponentially with the number of inputs. 
 
One of the important remarks made in the paper by Sugeno and Yasukawa [4], is the 
condition under which more than one fuzzy cluster can be found in the input space, so 
that they correspond to the same output cluster. It is made clear that special care has 
to be taken to form two or more convex input clusters. However, the details of this 
particularly important step are not given in any detail in the paper. With regards to 
this remark, it has to be stated that two conditions have to be considered when 
proposing an algorithm that could efficiently handle the problem. First, the algorithm 
has to be able to identify the occurrence of several (at least two) rules in one fuzzy 
output cluster, i.e., the presence of more than one corresponding fuzzy cluster in the 
input space. Second, the algorithm should be able to decide whether these input fuzzy 
clusters identified can be merged or any of them can be discarded. This paper shows a 
detailed analysis of these two conditions and proposes a cluster search algorithm that 
can address this problem efficiently. 
 
 
2 The Sugeno and Yasukawa’s Qualitative Modeling Method 
 
In a given data set, with k inputs, the given input -output data pairs for n patterns are: 
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   where i = 1, 2, 3, … n 
 
The SY method [4] is able to perform two main steps, identification and qualitative 
modeling in obtaining a fuzzy model as: 
 

iR : if 1x is iA1  and 2x is iA2 … and nx is i
nA  then y is iB   (1) 

 
In the identification step, it can be subdivided into structure identification I and II, 
and parameter identification.   In structure identification I, the main purpose is to find 
appropriate input candidates and input variables in building the model. Structure 
identification II is concerned with the input -output relations by concentrating on the 
number of rules and partitions of the input space. The parameter identification step is 
basically used to tune the parameters in the membership functions of the fuzzy sets. 
Finally, linguistic labels can be assigned to the finalized fuzzy sets in the rule base. In 
this paper, we are mainly concerned with the structure identification II stage. 
 
In order to extract a fuzzy rule base, the SY method uses two distinctive 
characteristics. First, it partitions the consequents of the rule and then finds a 
relationship concerning the premises. It is important that it does not use an ordinary 
fuzzy partition of the input space as shown in Figure 1. In order to satisfy the first 
characteristic, it makes use of the fuzzy c-means method (FCM) [8] to search for the 
fuzzy clusters in the output space using all available data. When determining the best 
clusters in the output space of the following selecting criterion [4] is used: 
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where 
 
 n: number of data to be clustered; 
 c: number of clusters, 2≥c ; 
 xk: kth data; 
 x : average of data; 
 v i: vector expressing the center of the ith cluster; 
 • : norm; 

 ikµ : grade of the kth data belonging to the ith cluster 
 m: adjustable weight 
 
The best cluster is determined when the selecting criterion S(c) reaches a minimum 
when the number of clusters, c, increases. The final results of the clustering have the 
relation between the grade of membership belonging to a fuzzy cluster B for every 
output y: 
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From the output fuzzy cluster B, a fuzzy cluster A is induced in the input space as 
shown in Figure 2. If there are two input dimensions x1 and x2, the fuzzy cluster A can 
then be projected to the axes x1 and x2 as shown in Figure 3. 
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Fig. 1. Ordinary fuzzy partition of the input space 

 



 
Fig. 2.  Fuzzy cluster A from output cluster B 

 

 
Fig. 3. Fuzzy cluster A for two input  dimensions 

 
 
From these cluster relations, this can be formulated as follows: 
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From this output cluster, a fuzzy rule is generated as:  
 

if x1 is A1 and x2 is A2, then y is B. 
 
 
3 The Problem of Clustering Input Space 
 
In the original approach, the output cluster is typically used to obtain the 
corresponding (single) input cluster as well, by projecting the output cluster onto the 
input space. However, in cases where there is more than one cluster in the input space 
corresponding to the same output cluster, e.g. A1 to Aj corresponding to the same 



output cluster B, a further step has to be done in order to separate them. The SY 
method suggests very generally that in the case of two (or more) input fuzzy clusters, 
two (or more) convex fuzzy clusters should be “formed carefully” in the input space 
as shown in Figure 4 and Figure 5. However, the details of the method are not shown 
in the paper as to how this can be done “carefully”.  The first problem that we address 
here is how to separate two or more input clusters and corresponding antecedents, 
especially in multi-dimensional cases. 
 

 
Fig. 4. Two fuzzy clusters for one output cluster. 

 

 
Fig. 5. Another example of two fuzzy clusters for one output cluster. 

 



Besides identifying the fuzzy clusters that may correspond in the input space to a 
specific output fuzzy cluster, some other factors need to be considered. They can be 
classified in two main areas as follows: 
 
(1) Merging of Input Clusters 
 
After identifying the possible clusters in the input space, the next question is whether 
all the identified clusters are necessary to produce a reasonable model. Depending on 
the distribution of the sample data as well as the nature of the problem, the seemingly 
separate two or more input clusters may appear just because there is a slight decrease 
between two peaks, indicating a lower frequency of data there, due to the uneven 
distribution of the available data. In this case, separating the clusters may not really 
improve the model, but may increase the number of fuzzy rules constructed. 
 
When sampling the data, noise may accidentally be included in the given input-output 
sample. Therefore it is not possible to define an exact model that describes the 
relationship between X and Y when noise exists in the input-output pair. However, a 
probabilistic relationship governed by a joint probability law P(ν) can be used to 
describe the relative frequency of occurrence of input -output pairs (xi, yi) for n 
training patterns. The joint probability law P(ν) can be further separated into an 
environmental probability law P(µ) and a conditional probability law P(γ). For 
notation expression, the probability law is expressed as: 
   

)()()( γµν PPP =      (5) 
 
The environmental probability law P(µ) describes the occurrence of the input X. The 
conditional probability law P(γ) describes the occurrence of the Y based on the given 
input X. An input-output pair (X, Y)  is considered to be noise if X does not follow the 
environmental probability law P(µ), or the output Y based on the given X does not 
follow the conditional probability law P(γ). In this case, even when the input clusters 
have been identified, it may be a noise motivated clustering result. In this case, using 
all the clusters may not really improve the model, but may increase the number of 
fuzzy rules constructed and thus the computational complexity. 
 
(2) Computational Efficiency 
 
The main advantage of the SY method as compared to traditional methods is that it 
works on the consequents rather than the premises. This is very computationally 
efficient. Besides, after the fuzzy model; which is a sparse fuzzy rule base; has been 
built, the model does not require intensive computation to generate an answer, as the 
number of fuzzy rules is small for most cases. Care must be taken when constructing 
an algorithm to identify the input fuzzy clusters within the output cluster. The 
algorithm has to be computationally efficient and at the same time does not increase 
the number of fuzzy rules generated tremendously.  
 
 



4 Identification of the Clustering in the Input Space 
 
Cluster the output as per the SY method using fuzzy c-means. In all our analysis here, 
we are assuming that the distribution in each cluster can be approximated by a normal 
distribution. 
 
For cluster Ci: 
 
(1) Random selection 
 
In each cluster, the population (Ui) of that cluster consists of data with membership 
not smaller than 0.2: 
 

},...,1,2.0|{ NjwherexU ijji =≥= µ    (6) 

where N is the number of data in cluster i. 
 
Those data that have membership grades smaller than 0.2 are left out, and are 
considered to be insignificant in contributing to the features of the cluster. When 
dealing with very large number of data, which is common in most real world 
applications, if we are to project all the output points back to the input space, this may 
be very time consuming. The total projections, p required are: 
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  and np >  
  where Ni is the number of data in cluster i 
 
We propose here to project a subset of N by using sampling distribution theory, being 
s. Regardless the distribution of the data in the cluster, s is always smaller than N [9]. 

When performing random selection, it is always necessary to ensure that the sample 
contains the major information in the population, Ui. The standard of measure is by 
using sampling distribution theory [10,11]. The basic idea is to ensure that the 
selected data can approximate the population in the cluster (Ui), by investigating the 
mean ( iu ), variance ( 2

uσ ) and standard deviation ( uσ ) of the population. 
 
For random sampling without replacement in a finite population, the variance ( 2

isσ ) 

and standard deviation (
isσ ) of the sample are as follows (with the assumption that s 

> 0.05N): 
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sN  is the finite population correction factor. 

 
However, according to the Central Limit Theorem, the finite population correction 
factor can be ignored if and only if Ns 05.0≤ . 
 
If the sample (Si) we have selected is a good representation of the population (Ui) in 
the cluster, then the sampling error should be small. Sampling error (E) is the measure 
of the difference between the sample average and the population average: 
 
  ii suE −=       (10) 
 
In order to obtain a better random sample for use in the projection, three random data 
sets are obtained and their sampling errors are compared. The best sampling error of 
the three are then selected for use in the next step. However, the next issue we have to 
deal with is the size of s. In this paper, we make use of the mean as a guideline. The 
size of sample, s, required for accuracy of uσ , A, for a confidence level, l are: 
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 where Z is the z-value corresponding to the desired confidence level, l 
 
As we are using 5% accuracy and a confidence level of 95%, s can be simplified to: 
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As the denominator is a factor of 0.00065, s will be very small compared to N if N is 
very large, thus the computational complexity of projecting p will be reduced. 
 
(2) Partitioning of input 
 
After the random sample s has been selected, partitioning of the input variables into 
intervals needs to be carried out in order to identify the clusters in the input space. In 
this paper, we make use of the partial completeness measure K to account for the 
information lost by partitioning [12]. The decisions on how to partition an input 
variable and the number of partitions required depends on how this partial 
completeness measure reflects the information lost. Information lost while 
partitioning mainly occurs in the next stage. The main reason for information loss is 



due to combining the adjacent intervals in searching for the normal distributed 
clusters. Besides, the weighting function in discarding any rules as noise is also 
implied by the partitions, this will in turn cause information to be lost. Let Ru be the 
set of rules obtained by considering all ranges over the variables, then Ru’ be the set 
of rules obtained by considering all ranges from the partitioning of the variables. 
When Ru is transformed into Ru’, information is lost. The partial completeness 
measure is basically used to measure how far or close is Ru’ is to Ru.  
 
The partial completeness measure used to identify the number of intervals has direct 
effect from the human’s decision on the confidence level and support level for each 
rule. It is known that in order to guarantee close rules will be generated, the minimum 
confidence must be set to 1/K times the desired level [12]. It is also shown that equi-
depth partitioning minimizes the partial completeness level for any specified number 
of intervals.  
 
After the analysis, the number of partitions I required can be calculated by the 
formula: 
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where  k is the number of input variables,  
min sup is the minimum support (as a fraction) specified  
by the user,  

and  K is the partial completeness level. 
 
It is important to have the partitions as small as possible in order to obtain a 
constructed rule base Ru’ that is as close to Ru as possible, but this will effectively 
increase the number of partitions. Care needs to be taken while selecting the 
appropriate partial completeness level, which is normally chosen to be between 1.5 
and 5 [12]. If the number of partitions for an input variable is large, the support for a 
partition may be low. If the support for a partition is too low and just happens to be 
away from the searched distribution as shown in Figure 6, it will be treated as an 
outlier and be discarded while forming the cluster. In order to solve this problem, we 
introduce an algorithm for combining adjacent partitions while searching for input 
clusters. The details of the combination algorithm will be discussed in the next 
section. 
 
(3) Identifying input clusters  
 
In this stage, the s projections are made and the counter CountBinj for each bin Binj are 
also set when it is hit by the projection. Bins refer to the intervals of the partitions. 
Figure 7 shows the bins and counters for a one-dimensional input space and the 
projections from an output cluster. 
 



 
Fig. 6. Partitions with support less than cut off threshold are treated as outlier. 

 
 

 
Fig. 7. Example of the projections and counters in the bins. 

 
Beside the counters, a relation is formed by all the input variables and the output. 
Therefore, a total of s relations are formed. The relations are constructed as: 
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   where i = 1, 2, 3, … s 
   and j = 1, 2, 3, … I 

 
Based on the counter value in each bin, they are recombined in order to search for 
fuzzy sets in the input space. The combination algorithm is as follow: 
 

A.  Identifying the centre of distribution 
 
By moving from left to right along the bins, the counter values are compared. 
If max(CountBinj-1, CountBinj+1 ) < CountBin, then Binj is the centre of the 



distribution. Figure 8 shows an example of the centres of the distribution 
with the circled bins with highest hits, i.e. centres of the distribution. 
 

 
Fig. 8. Illustration of centre identification.  

 
B. Distance measure. 
 

Find the distance between the left and the centre of the distribution: 
 
 1−−= BinjBinjL CountCountdist   (15) 

 
If distL is small (below a threshold) the two bins are combined into one. 
 
The distance between the right and the centre of the distribution: 
 
 BinjBinjR CountCountdist −= +1   (16) 

 
Similar to the left hand side, if distR is below the threshold, the two bins are 
combined. Figure 9 shows how they are combined. The above two steps are 
repeated until the two neighbouring distance measures are above the 
threshold. 
 

 
Fig. 9. Combination of bins. 

 



 
With these normal distributions found in the input space, input clusters are 
constructed. Trapezoidal approximations based on Ruspini partitions [13] are then 
used to convert the input clusters to trapezoidal fuzzy membership functions. 
Basically, the condition below is met when performing the trapezoidal 
approximations: 
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Trapezoidal approximations based on Ruspini partitions are illustrated in Figure 10. 
 

 
Fig. 10. Approximating trapezoidal fuzzy membership functions. 

 
The bins information in the relation is then substituted with their respective fuzzy 
membership information. Any repetition relations are then discarded. Relations with 
small weighting functions or support level are treated as noise and are also discarded.  
 
(4) Constructing fuzzy rules 
 
For this output cluster with the relation information of the input space, fuzzy rules can 
be constructed. If any fuzzy memberships are found to be next to each other, they are 
merged into one fuzzy membership as shown in Figure 11. A prediction index (PI) [4] 
is then calculated based on the predicted output and observed output. The prediction 
index (PI) [4] is: 
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Fig. 11. Merging of fuzzy membership functions. 

 
If it does not affect the PI, they will remain merged. This merging of fuzzy rules will 
help to reduce the number of fuzzy rules extracted. 
 
 
5 Conclusion 
 
This paper has examined the Sugeno and Yasukawa’s qualitative modeling (SY) 
method [4]. The popularity of the SY method is mainly due to its rule extraction 
algorithm. SY method finds the partition in the output space and then projects back to 
the input space in searching for the input partitions. This results in a sparse fuzzy rule 
base. This method also avoids the possibility of exponential growth of the fuzzy rule 
base. One of the important remarks made in the paper [4] is the condition under which 
more than one fuzzy cluster can be found in the input space that corresponds to the 
same output cluster. This paper has examined this issue and formulated an algorithm 
to address it. There are two conditions that are taken into consideration while 
formulating the approach. First, the algorithm has to be able to identify the occurrence 
of several rules in one fuzzy output cluster, i.e., the presence of more than one 
corresponding fuzzy cluster in the input space. Second, the algorithm should be able 
to decide whether these input fuzzy clusters identified can be merged or any of them 
can be discarded. The main objective of our approach was to formulate an algorithm 
that preserves the advantages of the original SY method, which are computational 
efficiency and small number of fuzzy rules produced. 
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